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Acronyms and Definitions

ALI Advanced Land Imager
ASTER  Advanced Spaceborne Thermal Emission 

and Reflection Radiometer
AutoMCU Automated Monte Carlo Unmixing
AVHRR  Advanced Very High Resolution 

Radiometer
AVHRR NDVI3g  Third-generation GIMMS NDVI from 

AVHRR sensors
B  Brightness band derived from the Tasseled 

Cap transformation
BG Bare ground
Br Rescaled brightness band
CLASlite Carnegie Landsat Analysis System–Lite
CONUS Contiguous United States
DI Disturbance index
DI′ Disturbance index prime
dNBR Delta Normalized Burn Ratio
EROS Earth Resources Observation and Science
EVI Enhanced vegetation index
FIA Forest Inventory Analysis
G  Greenness band derived from the Tasseled 

Cap transformation
GIMMS  Global Inventory Modeling and Mapping 

Studies
GIS Geographic information systems

GPS Global Positioning System
Gr Rescaled greenness band
LAI Leaf area index
Landsat ETM+ Landsat Enhanced Thematic Mapper+
Landsat OLI-TIRS  Landsat Operational Land Imager–

Thermal Infrared Sensor
Landsat TM Landsat Thematic Mapper
LandTrendr  Landsat-based Detection of Trends in 

Disturbance and Recovery
LCMMP  California Land Cover Mapping and 

Monitoring Program
LST Land surface temperature
MaFoMP Massachusetts Forest Monitoring Program
MGDI MODIS Global Disturbance Index
MODIS  Moderate-Resolution Imaging Spectro 

radiometer
MTBS Monitoring Trends in Burn Severity
NDVI Normalized difference vegetation index
NDWI Normalized difference wetness index
NPV Nonphotosynthetic vegetation
NRCS Natural Resources Conservation Service
PAR Photosynthetically active radiation
SPOT Satellite Pour l’Observation de la Terre
STAARCH  Spatial Temporal Adaptive Algorithm for 

mapping Reflectance Change
STARFM  Spatial and Temporal Adaptive Reflectance 

Fusion Model
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UN-REDD  United Nations Programme on Reducing 
Emissions from Deforestation and Forest 
Degradation

USDS-FS  United States Department of Agriculture 
Forest Service

USGS United States Geological Survey
USGS-LCCP  United States Geological Survey Land 

Cover Characterization Program
VCT Vegetation change tracker
W  Wetness band derived from the Tasseled 

Cap transformation
WELD Web-Enabled Landsat Data
Wr Rescaled wetness band

21.1 introduction

The purpose of this chapter is to explore the current trends in 
land cover change detection and to identify those trends that are 
potentially transformative to our understanding of land change, 
as well as identify knowledge/information gaps that should 
require attention in the future. The current level of understanding 
of the scale and pace of land cover change is inadequate (Frey and 
Smith 2007; Turner et al. 2007; Hansen et al. 2013). However, it is 
understood that land cover change is an undisputed component 
of global environmental change (Kennedy et al. 2014). Land cover 
changes and their impacts range widely from regional tempera-
ture warming to land degradation and biodiversity loss and from 
diminished food production to the spread of infectious diseases 
(Vitousek et  al. 1997; Farrow and Winograd 2001). Land cover 
change, manifested as either land cover modification or conver-
sion, can occur at all spatial scales, and changes at local scales can 
have cumulative impacts at broader scales (Stow 1995).

The long-standing challenge facing scientists and policy mak-
ers are the paucity of comprehensive data, at local, regional, and 
national levels, on the types and rates of land cover changes, and 
even less systematic evidence on the causes/drivers and conse-
quences of those changes (Walker 1998). Such data can be gen-
erated through a dual approach: (1) based on direct or indirect 
observations, for the regions and time periods for which data exist 
(Franklin 2002), and (2) based on projections by models (Lambin 
et al. 1999). A key element for the successful implementation of 
this dual approach is the monitoring of land cover on a system-
atic, operational basis (Strahler et al. 1996; Lunetta and Elvidge 
1998; Townshend and Justice 2002; Wulder and Coops 2014).

In data-rich locations, such as the United States, federal 
resource inventory programs, such as the U.S. Forest Service 
Forest Inventory and Analysis (FIA) program (Gillespie et  al. 
1999) and the Natural Resources Conservation Service (NCRS 
2000), have provided valuable statistical information on land 
cover dynamics for over 35 years. These agencies provide plot-
level information for remote sensing land cover mapping proj-
ects (Franklin et  al. 2000). However, there is also a need for 
spatially explicit, thematically comprehensive data products 
that can be provided by remotely sensed data (Loveland et  al. 
2002). For example, the U.S. Geological Survey’s Land Cover 

Characterization Program (USGS-LCCP) is designed to docu-
ment the rates, causes, and consequences of land cover change 
from 1973 to present, using Landsat North American Landscape 
Characterization (NALC) data (Soulard et al. 2014). The pro-
gram area spans 84 ecoregions of the conterminous United 
States. Another example of comprehensive large-area land cover 
assessment is the Canadian Forest Service Earth Observation 
for Sustainable Development of Forests (EOSD) program (http://
www.nrcan.gc.ca/), which monitors Canada’s forest cover with 
Landsat imagery (Wood et al. 2002). Additionally, the European 
Coordination of Information on the Environment (CORINE) 
program (http://land.copernicus.eu/pan-european/corine-land-
cover) maps land cover and land use (LCLU) (44  categories) 
using a variety of medium-resolution satellite data from 1990 
to present.

In data-poor locations, data derived from remote sensing 
are often the only source of information available for land 
cover monitoring (Lambin et  al. 1999). This situation places 
added pressure on remote sensing practitioners to produce 
accurate change maps using replicable methods, which can-
not be verified using the traditional suite of map accuracy 
tools (Rogan and Chen 2004; Dorais and Cardille 2011). 
The inclusion of land cover change in international agree-
ments such as the Kyoto Protocol under the United Nations 
Framework Convention on Climate Change (UNFCC), as well 
as the growing popularity of the United Nations Programme 
on Reducing Emissions from Deforestation and Forest 
Degradation (UN-REDD and REDD+), makes it essential to 
advance initiatives to monitor land cover change effectively 
(DeFries and Townsend 1999). Increased Landsat data avail-
ability (Wulder and Coops 2014) and the growing trend in 
automated mapping and change detection algorithms will 
likely open up the current data bottleneck such that develop-
ing countries can create more precise estimates of land change 
(Zhu and Woodcock 2014).

In addition to the technical advantages of remotely sensed 
data, the reduced data cost, increased accessibility and avail-
ability, and increased understanding of the information derived 
from these data have facilitated the launch of large-area remote 
sensing–based monitoring programs/initiatives (Loveland et al. 
2002; Eidenshink et  al. 2007), as well as global-scale medium 
spatial resolution change map data sets (Hansen et  al. 2013). 
Therefore, these data, in concert with enabling technologies such 
as global positioning systems (GPSs) and geographic informa-
tion systems (GISs), can form the information base upon which 
sound and cost-effective monitoring decisions can be made 
(Lunetta 1998).

While a large body of work has accumulated regarding land 
cover change monitoring using remotely sensed data (e.g., see 
reviews by Nelson 1983; Singh 1989; Hobbs 1990; Mouat et al. 
1993; Stow 1995; Coppin and Bauer 1996; Macleod and Congalton 
1998; Ridd and Liu 1998; Mas 1999; Civco et al. 2002; Coppin 
et al. 2002, 2004; Gong and Xu 2003; Wulder and Franklin 2006), 
little guidance exists for addressing large-area change mapping, 
especially in an operational context (Dobson and Bright 1994; 
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581Land Cover Change Detection

Loveland et  al. 2002). Thus, in light of the exciting potential 
for future operational land cover monitoring programs, and in 
acknowledgement of the large amount of new, disparate meth-
ods currently employed in change detection studies in the litera-
ture, this chapter presents a review of the key requirements and 
chief challenges of land cover change monitoring.

A general classification of the spatial resolution of remote 
sensing platforms produces three categories (Rogan and Chen 
2004): (1) coarse resolution (≥250 m) (e.g., Advanced Very 
High Resolution Radiometer [AVHRR]); (2) medium resolution 
(<250 m but ≥20 m) (e.g., Landsat Multispectral Scanner [MSS]); 
and (3) fine resolution (<20 m) (e.g., WorldView-2).

21.2  Land cover change Detection and 
Monitoring: theory and Practice

Figure 21.1 presents a conceptual scheme of a forest environment 
and demonstrates that land cover change can result in alterations 
(increase or decrease) in the abundance, composition, and condi-
tion of remote sensing scene elements over various spatial and tem-
poral resolutions (Stow et al. 1990). Conversion is shown in Figure 
21.1b. In contrast, modification (Figure 21.1c and d) involves 
maintenance of the existing cover type in the face of changes to its 
scene elements (i.e., change in abundance and condition).

Detection and monitoring land cover change across large 
areas are two of the most important tasks that remote sensing 

data and technology can accomplish (Woodcock et  al. 2001). 
Land cover change detection, one of the most common uses of 
remotely sensed data, is possible when changes in the surface 
phenomena of interest result in detectable changes in radi-
ance, emittance (Lunetta and Elvidge 1998), Light Detection 
and Ranging (LIDAR) return values (Wulder et  al. 2007), or 
microwave backscatter values (Rignot and Vanzyl 1993; Grover 
et al. 1999), which implicitly involves spatial patterns of change 
(Crews-Meyer 2002).

Khorram et  al. (1999) explored the spatial context of land 
cover change and stated that spatial entities either (1) become 
a different category; (2) expand, shrink, or change shape; (3) 
shift position; or (4) fragment or coalesce. These concepts are 
well understood by remote sensing practitioners, and especially 
the resource management community, worldwide, but less so by 
ecology, sociology, and vulnerability communities.

However, in the last 10  years, a number of important devel-
opments have occurred that have helped improve the adoption 
of land change information by scientific communities that had 
not done so previously. Land change science (Turner et al. 2007) 
has emerged as an interdisciplinary field that seeks to under-
stand LCLU dynamics as a coupled human–environment sys-
tem. This burgeoning theoretical field claims Earth observation 
data as a crucial component and so has effectively exposed land 
cover mapping and monitoring practices to a broad audience of 
anthropologists, economists, and sociologists. Another impor-
tant development is the opening of the Landsat archive in 2008 

(a) (b)

(c)

30 m

30 m

(d)

FIgure 21.1 Conceptual scheme representing land-cover changes from Time 1 (represented by (a)) to Time 2 (represented by (b), (c), and/or 
(d)): (b) change in composition; (c) change in abundance; and (d) change in condition, of vegetation cover, which influence the spectral quantity 
and quality of solar reflected radiation received by a Landsat sensor (30 m pixel).
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(Wulder et al. 2012). The availability of dense time series of mod-
erate spatial resolution Landsat imagery (since 1972 to present) 
has already had significant impacts on the ecology community 
(Kennedy et al. 2014) as temporal sequences and trajectories of 
importance to ecological conservation are now mostly matched 
by Landsat time stacks. Overall, therefore, we can expect to see, in 
the near future, remotely sensed data being used to test or verify 
theories in a much broader array of disciplines than ever before.

Most terrestrial surfaces are comprised complex configura-
tions of land cover attributes (Turner et al. 1999). These range 
from being mainly natural to those that are largely human dom-
inated (Turner and Dale 1991). Land cover change is viewed in 
terms of modifications in component attributes within either 
natural or human-dominated land cover or conversions from 
natural to human-dominated land cover (Lambin et  al. 1999). 
Despite the recognized importance of land cover modifications 
(e.g., wind or insect damage), and in contrast to conversions (i.e., 
forest loss due to agriculture gain), they are not as well docu-
mented at operational scales (Lambin et al. 2001). This is partly 
due to the fact that modifications occur at many different spa-
tial scales and are often too subtle and cryptic to be mapped 
with a high level of confidence (Ekstrand 1990; Gong and Xu 
2003). Therefore, land cover modification analysis requires that 
a greater level of detail be accommodated in remote sensing 
analysis.

Macleod and Congalton (1998) listed four aspects of change 
detection that are important when monitoring land cover 
using remote sensing data: (1) detecting changes that have 
occurred (Fung 1990; Lunetta et  al. 2002), (2) identifying 
the nature of the change (Hayes and Sader 2001; Seto et  al. 
2002), (3) measuring the areal extent of the change (Stow et al. 
1990; Rogan et al. 2003), and (4) assessing the spatial pattern 
of the change (Crews-Meyer 2002; Read 2003). Therefore, 
change monitoring initiatives/programs (i.e., both current 
and planned) should try to accommodate these four factors, in 
addition to appreciating the magnitude, duration, and rate of 
changes that can occur (Rogan and Chen 2004). Additionally, 
the burgeoning operational monitoring paradigm represents a 
shift away from the paradigm of the ubiquitous two-date end-
to-end change detection approach (i.e., only two dates used 
in analysis), due to their greater temporal scope (Kasischke 
et al. 2004).

21.3  trends in Land cover change 
Detection and Monitoring

21.3.1 Historical trends: eight epochs

The history of land cover change mapping and monitoring 
has witnessed five distinct periods, determined by the evolu-
tion of remote sensor technology, and research needs, related 
to resource management mandates and various scientific 
research interests:

 1. Early case studies (late 1970s) were exploratory and pri-
marily focused on urban change detection (Todd 1977).

 2. Research then shifted to case study applications (early 
mid-1980s) in natural environments, based on the needs 
of resource management agencies and the burgeoning 
interest in carbon sequestration (Singh 1989).

 3. Successful applications and experience (mid–late 1990s) 
led to more widespread applications of remote sensing 
over large areas and using a wide variety of methods 
(Lambin and Strahler 1994).

 4. Improved sensor technology facilitated the increased 
interest in less-researched fields, such as urban applica-
tions of remote sensing, the cryosphere, and coastal-ocean 
research (mid-1990s–present) (Rashed et  al. 2001), and 
the new approach adopted by the Moderate-Resolution 
Imaging Spectroradiometer (MODIS) science team to 
provide image information products such as global land 
cover (Friedl et al. 2011). Large-area, high spatial resolu-
tion remote sensing became possible in 1994, when the 
U.S. government allowed civil commercial companies to 
market high spatial resolution satellite remote sensing 
data (i.e., 1 and 4 m spatial resolution) (Glackin 1998).

 5. Today, a 40-year archive of Landsat imagery, a 22-year 
archive of AVHRR Global Inventory Modeling and 
Mapping Studies (GIMMS) normalized difference veg-
etation index (NDVI) data, and a 15-year archive of 
MODIS imagery and information products, coupled 
with an explosion in image time series research and 
increased automation, have made operational regional–
global-scale land change monitoring a reality (Wulder 
and Coops 2014). Table 21.1 presents a comparison of 
AVHRR, MODIS, and Landsat data in terms of spatial 

TABLe 21.1 Comparison of AVHRR, MODIS, and Landsat in Terms of Spatial and Temporal Resolution

Sensor/Program
Temporal 
Lineage

Temporal 
Resolution

Geographic 
Coverage Spatial Resolution Information Content Information

AVHRR-GIMMS 1982–2012 Biweekly 
composites

Global 1/12° (8 km at the equator) NDVI http://glcf.umd.edu/
data/gimms/

MODIS 1999–present Daily and 8-day 
composites

Global 250, 500, 1000 m Multispectral/biophysical 
products

http://modis.gsfc.
nasa.gov/

Landsat 1972–present 16 days Regional 30 m Global Land Survey 
global coverage: 1970, 
1990, 2000, 2005, 2010

Multispectral http://landsat.gsfc.
nasa.gov/

http://landsat.usgs.
gov/science_GLS.php
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583Land Cover Change Detection

and temporal resolution. Clearly, the high temporal cov-
erage AVHRR and MODIS data are optimal for regional–
global analysis, but they can only provide this coverage 
at coarse spatial resolution. On the other hand, Landsat 
data are provided at much finer spatial scales (30 m) but 
are mostly limited to local–regional coverage. However, 
the Global Land Survey initiative provides global Landsat 
coverage for five dates between the early 1970s and 2010. 
Spatial resolution is a key-limiting factor in the abil-
ity of remote sensing imagery to resolve land cover and 
land cover change classes. This is because spatial scale 
exerts a strong influence on the ability to extract infor-
mation from remotely sensed data sets and requires care-
ful specification and analysis. As a result, the question 
of which remotely sensed data are appropriate for spe-
cific land cover change monitoring applications remains 
an open one. Obviously, the resolvability of land cover 
change increases with higher spatial resolution. However, 
high spatial resolution imagery is not typically needed 
to accurately detect general land cover changes (the goal 
of large-area monitoring studies) in most environments 
(Franklin and Wulder 2002). Studying a variety of envi-
ronments, Townshend and Justice (1988) reported that 
spatial resolutions coarser than about 200 m undermined 
the reliable detection of land cover changes. Pax-Lenney 
and Woodcock (1997) examined the impact of coarsening 
the spatial resolution on the accuracy of areal estimates 
of agricultural fields in Egypt (30–120–240–480–960 m). 
Most of the coarse- resolution estimates were within 10% 
of the original 30 m estimates. Therefore, medium spatial 
resolution data remain the optimal choice for most land 
cover change studies, but more research over time will 
challenge this assertion in the interest of global-scale esti-
mation and cost reduction, using coarse spatial resolution 
data, relative to the particular application.

21.3.2 cause of Land cover change

A brief survey of the number of new remote sensing journals 
shows that 24 journals have been launched since 2007 (an increase 
of 60% in a 7-year time span). The remarkable proliferation of 
new journals likely reflects the growing user community and 
wealth of new remote sensing applications, enabled by a growing 
time series of free data and also the increased availability of open 
source software packages (e.g., Quantum GIS). Today, techniques 
to perform change detection have become numerous as a result of 
increasing versatility in manipulating digital data and growing 
computing power (Rogan and Chen 2004). The sheer number of 
published articles and the importance to resource management 
indicate both the degree to which remote sensing is used and the 
proliferation of methods employed. One dimension of this pro-
liferation is progress in developing new and improved ways of 
detecting change, while another dimension is the wide variety of 
kinds of changes being monitored (Table 21.2). Table 21.2 presents 

the dominant causes of multitemporal land cover change in 
natural and human-dominated environments and their tempo-
ral and physical characteristics. Each change event can result in 
very different magnitude (i.e., small–large), duration (i.e., days to 
decades), and temporal rates (i.e., slow–fast) (Aldrich 1975; Gong 
and Xu 2003). Understanding the magnitude, duration, and rate 
of land cover disturbances has severe implications for the success 
of a land cover monitoring study because it permits researchers 
to determine the most appropriate sensor, derived data set, fre-
quency of acquisition, level of image processing, and reproducible 
map legend.

It is important to note that not all land change disturbances 
are equally important in change detection studies, and not all 
disturbances may be detected as confidently as others (Gong 
and Xu 2003). For example, land changes of lesser concern to 
forest managers include those related to interannual variability 
and growth variation caused by climate variability, whereas, 
to global change modelers, the last type of change is of chief 
concern (Turner et al. 1999). A key issue in change detection is 
understanding how the types of change affect land cover and 
also how they interact with one another. For example, pheno-
logical vegetation change, which varies temporally across scales 
ranging from years to decades, often interacts with more tem-
porally discrete changes, such as burn scar vegetation depletion 
and postfire regeneration (Rogan et al. 2002).

21.4  Land cover change 
Detection Approaches

21.4.1  Monotemporal change Detection: 
Products for Real time and 
Specific Disturbance types

Numerous land change applications, using only a single image 
date (i.e., monotemporal change detection) (Coppin and Bauer 
1996, p. 217), which focus on a specific change event, have suc-
cessfully detected a variety of land cover disturbances. These 
disturbances include water stress (Running and Donner 1987; 
Running and Pierce 1990), wildfires (Patterson and Yool 1998; 
Rogan and Franklin 2001), forest thinning (Nilson et al. 2001), 
forest pest damage (Leckie et  al. 1988; Vogelmann and Rock 
1988; Joria and Ahearn 1991; Franklin et al. 1994), forest mortal-
ity (Ekstrand 1990), and the effects of pollution on vegetation 
vigor (Pitblado and Amiro 1982; Toutoubalina and Rees 1999).

Monotemporal applications are an effective application of 
“swapping time for space.” Applications of remotely sensed data 
for disturbance-specific monitoring have considerable advan-
tages, including savings in processing time and reduced costs 
(Patterson and Yool 1998). Further, end users may require a 
quick  look at a particular disturbance for rapid response in the 
case of mudslide, wildfire, or flood events. A good example of this 
is the U.S. Forest Service rapid-response wildfire detection proj-
ect that relies on MODIS active fire detection data (USFS 2004). 
However, monotemporal approaches rely heavily on assumptions 
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584 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

about the initial state of land cover in the particular study area 
(Ekstrand 1994). Indeed, an important factor in the success of 
these studies is that prechange information (e.g., predisturbance 
spectral information) and stand and landscape characteristics 
(e.g., stratification of mixed vegetation canopies, stand-based 
analysis, slope, and aspect) are controlled to minimize confusion 
between change and unchanged land cover types (Ekstrand 1990). 
This implies that prechange, or predisturbance spectral, and/or 
land cover information are needed to robustly resolve monotem-
poral disturbances using remotely sensed data (Franklin 2001). 
For monotemporal (rapid response) applications, coarse spatial 
resolution data acquired by sensors such as AVHRR, Satellite 
Pour l’Observation de la Terre (SPOT) Vegetation, and MODIS 
data are appropriate. Image preprocessing requirements are 
minimal, but a spectral transformation (e.g., vegetation index) 
would be useful to separate the disturbance signal (e.g., wildfire 
or flooding) from the undisturbed background and facilitate 
simple spectral change thresholding, if required.

Recent advances in real-time disaster response management 
provide an informative application of monotemporal change 
detection. The International Charter on Space and Major 
Disasters (http://www.disasterscharter.org) was founded in 1999, 
after the catastrophic Hurricane Mitch struck Central America. 
The Charter aims at providing a unified system of space data 

acquisition and delivery to locations affected by natural disasters 
and receives imagery contributions from a group of 15 interna-
tional participating Earth observation agencies. Additionally, 
the United Nations Platform for Space-based Information for 
Disaster Management and Emergency Response (UN-SPIDER 
program) was established in 2006 to serve as a gateway to space 
information for disaster management support (http://www.un-
spider.org/). These two disaster response programs rely on high 
spatial resolution data to achieve their goals.

While high spatial resolution sensors cannot conveniently 
or cost effectively provide wall-to-wall coverage for large-area 
change mapping applications due to data cost and volume, they 
are invaluable as a source of ground reference information for 
medium- and coarse-resolution products/applications and for 
operational monitoring studies over small spatial extents (Stow 
et al. 2002). Technological advances in sensor design allow aerial 
photographic precision and quality in these satellite-based data 
and permit the investigation of thematic information at the 
highest order in both natural and urban/suburban landscapes. 
Though promising, change detection using high spatial reso-
lution data requires further research and development (Rogan 
and Chen 2004). Data costs, compared to free Landsat data, for 
example, are very high. Other issues include the impact of off-
nadir view angles on change detection and the increasing need 

TABLe 21.2 Causes of Land Cover Change and Their Magnitude, Duration, and Rate

Cause Magnitude Duration Rate References

Phenology Small–medium Days–months Medium Goodin et al. (2002), Jakubauskas et al. (2002), Zhang et al (2003)
Regeneration Small–medium Days–decades Slow Fiorella and Ripple (1993), Lawrence and Ripple (2000)
Drought Small–medium Months–years Slow Peters et al. (1993), Jacobberger-Jellison (1994)
Flooding Medium–large Days–weeks Medium–fast Blasco et al. (1992), Michener and Houhoulis (1997), Rogan et al. (2001), 

Zhan et al. (2002)
Wildfire Small–large Days–weeks Fast Patterson and Yool (1998), Rogan and Yool (2000)
Disease Small–large Days–years Slow–medium Wilson et al. (2002), Kelly and Meentemeyer (2002)
Insect attack Small–large Days–years Slow–fast Muchoney and Haack (1994), Chalifoux et al. (1998), Radeloff et al. (1999)
Ice storm Small–large Years Medium–fast Dupigny-Giroux et al. (2002), Millward and Kraft (2004), Olthoff et al. 

(2004)
Mortality Medium–large Days–years Slow–fast Collins and Woodcock (1996), Allen and Kupfer (2000)
Water/nitrogen stress Small–medium Days–years Slow–fast Running and Donner (1987), Penuelas et al. (1994)
Pollution Small–large Years Slow Ekstrand (1994), Rock et al. (1988), Rees and Williams (1997), Diem (2002), 

Tommervik et al. (2003)
Thinning Medium–large Days Fast Olsson (1995), Nilson et al. (2001), Peddle et al. (2003a)
Clear-cutting Large Days Fast Hayes and Sader (2001)
Replanting Small–medium Days–decades Fast Coppin and Bauer (1996), Levien et al. (1999)
Mining Large Days–decades Medium Cadac (1998)
Grazing Small–medium Days–decades Slow–medium Rees et al. (2003)
Wind throw Large Days Medium–fast Mukai and Hasegawa (2000), Kundu et al. (2001), Lindemann and Baker 

(2002)
Erosion Small–medium Days–weeks Fast Dwivedi et al. (1997), Hong and Iisaka (1987), Michalek et al. (1993), Rosin 

and Hervas (2002)
Environmental quality Small–large Months–years Slow Fung and Siu (2000)
Fragmentation Small–large Days Fast Wickham et al. (1999), Millington et al. (2003)
Conversion Large Years–decades Slow–medium Jha and Unni (1994), Loveland et al. (2002)
Desertification Small Years–decades Slow Robinove et al. (1981), Pilon et al. (1988)

Source: After Gong and Xu (2003).
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585Land Cover Change Detection

for object-based mapping (Stow et al. 2004). Further, geometric 
distortion is a vexing problem for most airborne data sets (see 
Franklin and Wulder 2002).

21.4.2  Bitemporal change Detection: Map 
comparison and Disturbance Analysis

In the vast majority of land cover change studies, imagery from 
one date is compared to another date. Within this paradigm of 
analyzing images as endpoints, there has been a tremendous 
variety of methods developed and used. This proclivity of bitem-
poral studies has been caused by several factors: (1) There are 
fewer data to analyze, (2) studies have been conducted to satisfy 
burgeoning short-term resource management needs, (3) various 
researchers have needed a straightforward scenario in order to 
compare and evaluate a variety of change detection techniques 
to find an optimal method, (4) most studies have been conducted 
in regions of limited spatial extent and landscape heterogene-
ity, and (5) these studies have focused on a single disturbance 
event (e.g., flooding, fire, logging, or pest infestation) in environ-
mentally (e.g., tropical forests) or politically (e.g., municipalities) 
important regions. Thus, while bitemporal change detection will 
continue to serve its purpose for a long time to come, its effi-
ciency and consistency over large, heterogeneous areas has yet to 
be fully examined (Rogan et al. 2003). However, the potential for 
moderate spatial resolution analysis in land change monitoring 
is enormous (Zhu and Woodcock 2013).

21.4.2.1 Bitemporal change Detection Methods

The selection of an appropriate change detection technique 
depends on the information requirements, data availability and 
quality, time and cost constraints, analysis skill, and experi-
ence (Johnson and Kasischke 1998). Table 21.3 presents a sum-
mary of a variety of land cover change detection methods and 
their advantages and disadvantages for operational monitor-
ing. Twelve change detection methods are compared according 
to their status in terms of operational use, as well as their rela-
tive strengths and weaknesses. The chief division between the 
12 methods occurs between postclassification comparison (i.e., 
categorical change) and the suite of existing continuous change 
detection techniques (e.g., image differencing).

The choice of either categorical or continuous comparison 
must be based on an understanding of the spectral and spatial 
impact of a given land cover disturbance or range of distur-
bances. If land cover attributes are expected to change category 
(e.g., forest to urban), then postclassification comparison is suit-
able, if not optimal. However, in many ecosystems, complete 
land cover conversion rarely occurs over short time intervals 
(i.e., 3–5 years). In effect, modification in condition and abun-
dance is more common than conversion (Coppin and Bauer 
1994; Rogan et al. 2002). Therefore, this makes continuous com-
parison a more suitable choice of change detection approach for 
monitoring land cover modifications, especially over relatively 
short time intervals (i.e., 2–5 years). When longer time periods 
are considered (e.g., 5–10  years), then categorical comparison 

may be more suitable, as actual land cover conversion may be 
more likely to occur. In situations where digital data are not 
available for earlier time periods (e.g., pre-1972), categorical 
comparison is the only feasible approach (e.g., a land cover map 
of 1775 can be compared to a 1990 land cover map) (Petit and 
Lambin 2002).

21.4.2.2 Map-Updating Approaches

Another interesting trend in bitemporal change mapping is the 
use of novel map-updating approaches. Postclassification com-
parison has been implemented in hundreds of land change case 
studies, but it is problematic in many land change monitoring 
scenarios (Stow et al. 1980). Over large areas, land change map-
ping is challenging for some of the following reasons: (1) Data 
issues such as cost, platform continuity, availability of aerial 
photographs, or in situ data inhibit comprehensive spatial and 
temporal coverage and (2) cloud cover, nonstationarity in land-
scape features, and phenological variability further limit the 
usability of available imagery. In combination, these challenges 
make the task of remapping an entire landscape for a second or 
even third iteration very expensive and possibly unachievable 
at an acceptable level of map accuracy (Rogan and Chen 2004). 
Actual land change due to categorical conversions (e.g., forest to 
urban) or within-category modifications (e.g., timber harvest) 
usually occupies only a small portion of a pair of 34,000  km2 
Landsat images (e.g., less than 20%) (Rogan et al. 2003) such that 
independent remapping of a landscape for a new time period is 
not warranted as long as there are no drastic changes to a land 
monitoring protocol (e.g., new map legend, change to incompat-
ible new data sources) (Rogan and Chen 2004).

There are two main methods of map updating present in the 
remote sensing literature: (1) human-interpreted delineation of 
new changes using multitemporal data and (2) digital change 
detection of multitemporal imagery to detect a specific type of 
disturbance, such as urban sprawl, or forest damage. Feranec 
et  al. (2007) implemented a human-interpretation method of 
change detection with visually interpreted aerial photography 
to update the CORINE 44 category land cover map for 1990 
and 2000. The 2000 land cover map was created by visually and 
manually editing polygons of change in the original 1990 clas-
sification with overall accuracy above 85%. Other studies have 
used more automated methods of predating and postdating land 
cover maps to monitor forest change. Wulder et al. (2008) imple-
mented a technique to postdate a 2000 land cover map to 2003 
land cover conditions to detect forest clear-cuts using the near-
infrared band from Landsat TM/Enhanced Thematic Mapper+ 
(ETM+), SPOT-4, and Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) data. Forest clear-cuts were 
detected using an ordinal ranking method that assigns pix-
els a value based on its reflectance relative to all other pixels. 
Detected clear-cuts were integrated into the preexisting 2000 
EOSD eight-category land cover product. We expect that new 
innovative approaches to map updating will emerge in the next 
decade as remote sensing practitioners merge change mapping 
and resource inventory in a mutually beneficial process.
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586 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

TABLe 21.3 Summary of a Variety of Land Cover Change Detection Methods and Their Advantages and Disadvantages for Operational 
Monitoring

Change Detection Method and 
Statusa Advantages Disadvantages

Postclassification comparison (PCC) Provides detailed from–to information Only complete class changes are detected
status = I Can be used with different sensors and with different 

spatial and spectral resolutions
Heavily dependent on the accuracy of input maps and 

consistency between mapping methods
Permits the use of data with interdate phenological 

differences
Costs often prohibitive over large areas

Less sensitive to radiometric/geometric errors
Composite analysis (CA) Requires only a single classification Can require a large number of classes and a large 

calibration data set
Status = I Can be applied to both raw and enhanced data 

(e.g., vegetation indices, albedo)
Separation of spectral changes from temporal changes can 

be difficult
Makes effective use of prechange (reference) image

Image differencing (ID) Can be applied to both raw and enhanced data Requires optimization of change/no change threshold
status = I Provides detailed information on “within class change” Difference image interpretation can be difficult

Cannot differentiate spectral differences resulting from 
different original spectral values

Highly sensitive to radiometric/geometric errors
Does not provide from–to information

Image ratioing (IR) Can be applied to both raw and enhanced data Highly sensitive to radiometric/geometric errors
status = I Can mitigate atmospheric and sun angle effects Threshold optimization can be difficult, as change is 

nonlinearly represented
Change vector analysis (CVA) Can be applied to both raw and enhanced data Highly sensitive to radiometric/geometric errors
status = F Provides detailed from–to information Change-direction outputs are difficult to interpret with a 

large number of input bands
Change magnitude thresholding is subjective

Multitemporal Kauth Thomas (MKT) Results are intuitive Coefficients are sensor dependent
status = I Produces suites of change, no change, and noise features Highly sensitive to radiometric/geometric errors

Standardized coefficients permit application and 
comparison over time and space

Multitemporal spectral mixture 
analysis (MSMA)

Results are intuitive (biophysically) Sensitive to choice of end-member type
Can be used to compare fraction estimates across 

different sensors and platforms
Principal components analysis (PCA) Can be applied to both single-date, composite 

multidate, and composite ID data
Components can be difficult to interpret

status = I Reduces multispectral data sets into features 
representing change, no change, and noise

Threshold optimization can be difficult

In multitemporal analysis, standardized components 
can minimize atmospheric and sun angle differences

Statistically based, so limited in space and time
Sensitive to disproportionate amounts of variance in the 

imagery

Multivariate alteration detection 
(MAD)

Reduces multispectral data sets into features 
representing change, no change, and noise

Has not been widely used

status = E Can be used to compare information from different 
sensors

Insensitive to disproportionate amounts of variance in 
imagery

Multitemporal visualization Simple and intuitive Qualitative
status = I Permits inspection of three dates of imagery as RGB Does not provide from–to information
Knowledge-based approaches Automatic detection of change Complicated approach to develop
status = F Have not been widely used
Cross-correlation analysis (CCA) Allows for direct updating of land cover maps Has not been widely used
status = F

a Status of the method in an operational context for land cover change monitoring: I, implemented in operational context; F, feasible in an operational context; 
E, experimental.
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587Land Cover Change Detection

21.4.3  temporal trend Analysis: 
Automation and Big Data

Over the last four decades, voluminous amounts of digital data 
have been gathered from an ever growing number of satellites 
and sensors continuously monitoring the Earth, atmosphere, 
and oceans. Fortunately, the massive increase in available data 
has coincided with a rise in computing power, and since the 
widespread popularization of online mapping platforms and 
user-generated geographic information, often linked to the 
release of Google Earth™ in 2005, a broader user base for the 
“Geoweb” has developed (Elwood 2011). The most significant 
change in the practice of land cover change mapping and moni-
toring has come from this “Big Data” paradigm, also known as 
“data-intensive science” (Kelling et al. 2009).

21.4.3.1  Hypertemporal Remote Sensing 
Data in trend Analysis

Trend, or temporal trajectory, analysis involves the applica-
tion of data acquired on a large number of observation dates 
(i.e., hypertemporal) (inter- and intra-annual), traditionally 
using coarse spatial resolution, spectrally transformed imag-
ery (e.g., NDVI, photosynthetically active radiation, and leaf 
area index estimates derived from AVHRR and MODIS). This 
topic is reviewed thoroughly by Henebry and de Beurs (2013). 
Once assembled, temporal–spectral profiles can be useful for 
describing high-frequency land cover modifications over coarse 
spatial scales (Eastman et al. 2009). The study of land surface 
phenology has witnessed a large increase in remote sensing 
practitioners and applications as a method for studying the 
patterns of plant and animal growth cycles, due to the increase 
in freely available information/data sets. Phenological events 
are sensitive to climate variation such that phenology data pro-
vide timely baseline information for documenting trends in 
agriculture, irrigation, and forest growth rates and detecting 
the impacts of climate change on multiple scales (Henebry and 
de Beurs 2013). The increased complexity that remote sensing 
practitioners face when working with hypertemporal data sets 
is now being ameliorated through new software functional-
ity. For example, the Earth Trends Modeler is an integrated 
suite of tools within IDRISI software for the analysis of image 
time series data and allows the user to perform and analyze 
trend analysis results in both graphic and cartographic format 
(http://www.clarklabs.org/).

Information from trend analysis can provide information on 
landscape or land surface phenological variability for finer spa-
tial resolution studies so that change related to disturbances can 
be potentially separated from climate (temperature and precipi-
tation) variability (Borak et al. 2000). High temporal, coarse spa-
tial resolution imagery has also been used effectively to document 
the prevailing trends in vegetation phenology over large areas 
to guide the acquisition of medium spatial resolution imagery 
(i.e., to reduce commission errors caused by uneven intra- and 
interannual green up) (Rees et al. 2003). As such, changes inher-
ently linked to seasonality can potentially be separated from 

other land cover changes (Coppin et al. 2002). However, spatial 
resolution is often a limiting factor in these studies, especially 
when examining subtle land cover changes (Rees et al. 2003).

21.4.3.2 challenges of trend Analysis

One of the most challenging aspects of trend analysis is that it 
requires a high level of image preprocessing to account for sensor 
and platform differences, sensor drift, etc. (Coppin et al. 2004). 
Trend analysis can be performed using coarse-to-medium spa-
tial resolution data, although coarse-resolution data are more 
plentiful. Substantial preprocessing is required, given the large 
volume of data and the need for a high level of geometric and 
radiometric consistency. While classification is not essential, 
the use of image transformations to reduce data volume in size 
is essential. Most large-area programs utilize categorical com-
parison approaches to detect and monitor land cover change. 
While this development is noteworthy, and expected to con-
tinue, the land change science community requires information 
on land cover modifications, which conversion-focused pro-
grams cannot efficiently or reliably provide. However, there is 
potential for improvement with increased data availability and 
accessibility and growing experience with and understanding 
of sensors and imagery in large-area scenarios (Franklin 2001; 
Rogan and Chen 2004).

21.4.3.3 Medium-Resolution Data for trend Analysis

A very promising new development is the advancement of data 
fusion, which involves the blending of multiple colocated images 
to produce a hybrid information product that minimizes the 
limitations of each contributing data set (Walker et  al. 2012). 
A typical fusion combination merges low temporal/high spatial 
resolution data with high temporal/low spatial resolution data 
methods to extend the temporal profile of Landsat data using 
daily or 8-day MODIS reflectance data (Gao et al. 2006).

Medium spatial resolution data sources are considered opti-
mal to obtain sufficient thematic detail for large-area monitor-
ing applications. Fortunately, the last decade has witnessed the 
growth in availability of medium spatial resolution data sets such 
as the Web-Enabled Landsat Data (WELD) program (Roy et al. 
2010). Since January 2008, the USGS survey has been providing 
free terrain-corrected and radiometrically calibrated Landsat 
data via the Internet. The WELD system is being expanded to the 
global scale to provide monthly and annual Landsat 30 m infor-
mation for any terrestrial non-Antarctic location for six 3-year 
epochs spaced every 5 years from 1985 to 2010. The WELD prod-
ucts are developed specifically to provide consistent data that 
can be used to derive land cover as well as biophysical products 
for assessment of land surface dynamics (Roy et al. 2010).

21.4.4  comparison of Several Automated 
change Detection Approaches

In recent years, much attention has been focused on automating 
the detection of land cover change, specifically forest disturbance, 
across broad landscapes, and using dense image time series stacks. 
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588 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Many spectral disturbance indices (DIs) (Healey et al. 2005; Hais 
et al. 2009; Mildrexler et al. 2009) and software platforms (Asner 
et al. 2009; Hilker et al. 2009; Huang et al. 2010; Kennedy et al. 
2010) have been created to monitor forest disturbance, each with 
their own relative strengths and weaknesses (Table 21.4).

21.4.4.1 Disturbance index

Healey et al. (2005) developed a novel combination of the Tasseled 
Cap features (brightness [B], greenness [G], and wetness [W]) to 
highlight forest disturbances over single and multidate Landsat 
image time series, known as the DI. The DI is a linear combina-
tion of the B, G, and W features where each feature is rescaled 
to one standard deviation above or below the mean forest value 
of the landscape under investigation, resulting in the equation

 DI B G Wr r r= − +( )

where r indicates the rescaled features. The DI is most sensitive 
to stand-replacing, discrete disturbances, which create a strong, 
stable, and relatively predictable spectral signal across space and 
time. Alternatively, the DI is less robust in landscapes where 
rapid postdisturbance succession occurs, such that the distur-
bance signal is weakened by increased understory vegetation 
growth and heterogeneity.

21.4.4.2 Disturbance index′

Hais et al. (2009) refined the DI to account for gradual distur-
bances across landscapes and forest stands exhibiting rapid suc-
cession (i.e., increased greenness) in understory vegetation. The 
disturbance index′ (DI′) equation is as follows:

 DI W Br r′ = −

By removing the greenness band from the original DI equation, the 
DI′ showed a heightened sensitivity to both discrete (i.e., clear-cut, 

windthrow, avalanche) and gradual disturbances (i.e., defoliation, 
insect mortality) across space and time when compared to the DI, 
G, B, W, and the normalized difference wetness index (NDWI).

21.4.4.2.1  MODIS Global Disturbance Index
The MODIS Global Disturbance Index (MGDI; Mildrexler et al. 
2009) is an automated change detection algorithm, which fuses 
the MODIS Reflectance product, Land Surface Temperature 
(LST), and MODIS enhanced vegetation index (EVI) data to detect 
large-area forest disturbances at global, continental, and subcon-
tinental scales. The MGDI uses annual maximum LST compos-
ites to detect large changes in land-surface energy and links those 
changes to the EVI signal, thus detecting discrete disturbances. 
Due to the scales at which the algorithm is optimized for, distur-
bances such as wildland fire events, hurricane damage, large-scale 
windthrow, clear-cuts, and land clearing for agriculture will be 
the major landscape modifiers captured over the time series.

21.4.4.3 cLASlite

Carnegie Landsat Analysis System–Lite (CLASlite) (V 3.1) is a 
stand-alone, fully automated software package used to map for-
est cover, deforestation, and forest degradation over broad spa-
tial extents and long time series by experts and nonexperts alike 
(Asner et al. 2009). CLASlite boasts a 1 h processing time on a 
standard Windows PC for a 30 m spatial resolution image across 
10,000 km2. CLASlite enables users to input raw data from a vari-
ety of satellite platforms (Landsat 4, 5, 7, 8; ASTER; Advanced 
Land Imager [ALI]; SPOT 4, 5; MODIS) where an automation 
procedure atmospherically corrects, cloud masks, and classifies 
images across multiple dates with little user input (see Asner 
et  al. 2009 for more details). The CLASlite algorithm utilizes 
a spectral mixture procedure called Automated Monte Carlo 
Unmixing (AutoMCU) to classify forest/nonforested areas for 
one or multiple image dates. Although the spectral libraries used 
in this procedure are optimized for tropical forests (>300,000 
spectral signatures), it has also been shown to classify temperate 
forests with great success (see case study in the following text).

TABLe 21.4 Comparison of Seven Prominent Change Detection Algorithms according to Ease of Use, Computation Time, Data Type, 
and Functionality

Algorithms Ease of Use Computation Time Data Type Cost Available to Use
Highlights 

Deforestation
Highlights 

Degradation Source

DI 2 NA L Free Y Y N Healey et al. (2005)
DI′ 2 NA L Free Y Y Y Hais et al. (2009)
CLASlite 1 1 L,S,A,M Free Y—with permission Y Y Asner et al. (2009)
VCT 2 1 L,S,IRS Free Y Y Y Huang et al. (2010)
LandTrendr 3 3 L Free Y—requires ENVI Y Y Kennedy et al. (2010)
MGDI 1 NA M Free N Y N Mildrexler et al. (2009)
STAARCH 3 NA L,M Free Y Y Y Hilker et al. (2009)

DI, disturbance index; DI′, disturbance index prime; MGDI, MODIS Global Disturbance Index; CLASlite, Carnegie Landsat Analysis System Lite; VCT, 
Vegetation Change Tracker; LandTrendr, Landsat-based Detection of Trends in Disturbance and Recovery; STAARCH, Spatial Temporal Adaptive Algorithm 
for mapping Reflectance Change; NA, not available; L, Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+); S, Satellite 
Pour l’Observation de la Terre 4 and 5 (SPOT); A, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); Moderate Resolution Imaging 
Spectrometer (MODIS); IRS, Indian Remote Sensing Satellite; ENVI, Exelis Visual Information Solutions.
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589Land Cover Change Detection

21.4.4.4 Vegetation change tracker

The vegetation change tracker (VCT) (Huang et al. 2010) is an 
automated algorithm used to delineate forest change across 12 
or more Landsat time series stacks with little to no user param-
eterization for closed or near closed forest canopies. The VCT 
algorithm will automatically create initial masks (i.e., clouds, 
cloud shadows, water) and temporally normalize for all scenes, 
calculate forest features, temporally interpolate masked land 
areas, and create a composite output image of all locations that 
experienced a disturbance for each time step. Additionally, the 
VCT algorithm calculates multiple types of change magnitude 
measures and tracks postdisturbance vegetation processes 
(i.e., succession). The VCT disturbance mapping technique 
is ideal for discrete, land-clearing events but works poorly 
for nonstand clearing events (i.e., thinning, selective logging, 
insect outbreak).

21.4.4.5 Landtrendr

The Landsat-based Detection of Trends in Disturbance and 
Recovery (LandTrendr; Kennedy et  al. 2010) is an algorithm 
that enables the user to systematically analyze a dense Landsat 
time series stack to produce robust short-term disturbance and 
long-term vegetation trend maps. Users are able to provide 
dense Landsat time series stacks into the LandTrendr, which 
are atmospherically corrected (Cos(t) algorithm), masked 
(smoke, cloud, cloud shadow, water), and temporally seg-
mented as a means to capture landscape disturbances. Output 
images and figures provide a wealth of information that quan-
tify landscape dynamics over the time series stack, allowing 
for a much more detailed assessment than bitemporal change 
methods can provide.

21.4.4.6  Spatial temporal Adaptive Algorithm 
for Mapping Reflectance change

The Spatial Temporal Adaptive Algorithm for Mapping 
Reflectance Change (STAARCH; Hikler et  al. 2009) blends 
Landsat and MODIS data to enhance the temporal resolution 

of Landsat (16 days) to MODIS (8 days). The STAARCH model 
employs Healey et al.’s (2005) DI to detect landscape changes, 
where the DI calculation is completely automated. To aid in 
heterogeneous landscapes, the STAARCH model uses the min-
imum standard deviation of forest spectral values to increase 
the sensitivity of the DI to spectral forest change (i.e., distur-
bance). Additionally, this algorithm is able to create synthetic 
Landsat images for a given study area/period for each avail-
able MODIS scene used. To note, this algorithm builds upon 
and improves the performance of the Spatial and Temporal 
Adaptive Reflectance Fusion Model (STARFM) algorithm 
(Gao et al. 2006).

21.4.4.7  Summary and comparison of 
Automated change Methods

To summarize the aforementioned change detection indices and 
algorithms, it is necessary to evaluate their purposes accord-
ingly (Tables 21.4 and 21.5). For high spatial and temporal reso-
lution rapid change detection, it would be most advantageous 
to employ the CLASlite or the VCT algorithm. To evaluate 
longer-term environmental landscape dynamics, where com-
putational power and time are not limiting, the LandTrendr 
would be the most appropriate algorithm of choice. The two 
DIs (DI and DI′) would be most efficiently utilized under the 
conditions where forest change detection across time would 
benefit from manual preprocessing steps to accommodate mul-
tidate disparities. Additionally, the MGDI would allow for a 
more sophisticated approximation of landscape disturbances 
across a very large area. Lastly, the STAARCH algorithm not 
only allows for a highly accurate downscaling of MODIS to 
Landsat pixel scale but also accommodates an automated DI 
calculation; therefore, this would be the algorithm of choice if 
large spatial extents combined with a need for high spatial and 
temporal resolution is necessary. It is imperative to assess each 
change detection algorithm based on their strengths, weak-
ness, and best fit for the research objectives and scales (both 
spatially and temporally).

TABLe 21.5 Comparison of Seven Prominent Change Detection Algorithms according to the Degree of 
Automation with respect to Atmospheric Correction, Cloud Masking, Image Calibration, and Mosaicking

Algorithms Atmospheric Correction Cloud Mask Calibration Mosaic Multiimage

DI N N Y N
DI′ N N Y N
MGDI N N Y Y
CLASlite Y—6S Y Y N
VCT Y—LEDAPS Y Y N
LandTrendr Y—Cos(t) Y Y Y
STAARCH N Y Y N

DI, disturbance index; DI′, disturbance index prime; MGDI, MODIS Global Disturbance Index; CLASlite, Carnegie 
Landsat Analysis System Lite; VCT, Vegetation Change Tracker; LandTrendr, Landsat-based Detection of Trends in 
Disturbance and Recovery; STAARCH, Spatial Temporal Adaptive Algorithm for Mapping Reflectance Change; LEDAPS, 
Landsat Ecosystem Disturbance Adaptive Processing System; Cos(t), cosine of theta.
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590 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

21.5  Accuracy Assessment: 
Beyond Statistics

“It is extremely difficult to implement a consistent, comprehen-
sive, quantitative accuracy assessment for large-area change maps” 
(Loveland et al. 2002, p. 1094). Following the detection and classifi-
cation/mapping of land cover change, it is preferable that the accu-
racy of the change maps be assessed. This topic is reviewed in detail 
by Olofsson et al. (2014). Accuracy assessment serves as a guide to 
the map quality and to reveal uncertainty and its likely implica-
tions to the end user. Accuracy assessment for change detection 
studies is more challenging than for single-date studies (Congalton 
1991; Khorram et al. 1999). This is because change classes usually 
represent a very small portion of the change image, or thematic 
map. Additionally, when performing retrospective change detec-
tion, acquiring an adequate database of historical reference materi-
als, such as historic aerial photographs, can be very difficult, if not 
impossible (Biging et al. 1998). The provision of archived imagery 
by Google Earth provides an important component to address-
ing the more vexing concerns in land change accuracy assessment 
(Dorais and Cardille 2011). Unfortunately, the remote sensing 
community has tended to focus exclusively on the calculation of 
map accuracy/validation statistics to demonstrate the validity of a 
method or the worth of a land cover map (Rogan and Chen 2004). 
While having statistical information about map accuracy is very 
useful, it ignores many other facets of a change map that are vital 
to making sure that true change has been captured (Ghimere et al. 
2010). These important facets include estimating the potential out-
come of the mapping exercise, estimating the areal dominance of 
categories, and determining the desired shape, location, associa-
tion, and configuration of mapped categories.

Based on 10  years of experience mapping forest, wetland, 
and urban change in Massachusetts, the Massachusetts Forest 
Monitoring Program (MaFoMP) (Rogan et al. 2010) developed 
the following list of eight steps to pursue when mapping change 
over a 40-year time period using all available cloud-free Landsat 
MSS, TM, and ETM+ imagery:

Step 1—Determine optimal data needs, image processing 
steps based on scene model (Strahler at al. 1986; Phinn 
et  al. 2000), and desired map legend (e.g., Anderson 
et al. 1976).

Step 2—Determine optimal response design, support 
size, and sampling design (identify the trade-offs 
between support size and cost-logistical feasibility) 
(see Olofsson et al. 2014 for more details).

Step 3—Qualitatively estimate success of mapping proj-
ect based on previous experience and literature (e.g., 
expected outcomes—“last time we achieved 80% over-
all accuracy”).

Step 4—Estimate expected category area/dominance 
using maps from other sources or your knowledge of 
the study area (e.g., categories A and B should comprise 
over 70% of the study area, whereas categories C and D 
should comprise less than 2% of the study area).

Step 5—Estimate expected category shape, location, asso-
ciation, and configuration (e.g., categories F and G will 
fall only on the coast in long linear strips, associated 
with ocean water).

Step 6—Quantitatively estimate overall accuracy and per-
class accuracy using validation data (should be appro-
priate support and sampling design). For a general 
purpose map, all categories should be ranked equal 
in importance (thus a balance must be struck between 
omission and commission errors) such that per-class 
accuracy should be equal. For a phenomenon-specific 
map (e.g., forest loss), certain categories should be 
ranked higher in importance than others such that 
omission errors should be avoided at all allowable 
costs, whereas certain levels of commission error are 
permissible (e.g., it is more important not to miss a rare 
category than it is to falsely map it). Keep in mind that 
resubstitution accuracy (i.e., using calibration data as 
validation data) can be a reasonable first-cut measure 
of your potential mapping success (Rogan et al. 2003).

Step 7—Engage in postclassification editing/filtering 
to achieve a product that looks right. This may make 
you return to your original training data and redo the 
work, especially in heterogeneous locations.

Step 8—Evaluate the map such that the end user can 
employ it wisely for a task that you may not have 
thought of (e.g., let the map user know your decisions/
activities for Steps 1–8 earlier).

21.6  Massachusetts case 
Study: cLASlite

This case study explores the application of CLASlite (Asner et al. 
2009) mapping and disturbance detection software to map forest 
and forest change in Massachusetts. CLASlite can operate with a 
variety of satellite data types, including Landsat, SPOT, ASTER, 
ALI, and MODIS. Landsat TM, ETM+, and Operational Land 
Imager–Thermal Infrared Sensor (OLI-TIRS) data were acquired 
for 9 individual years spanning nearly three decades (Table 21.6) 
across eastern Massachusetts (Figure 21.2). Four Landsat tiles 
were downloaded for each respective year and georeferenced 
using image-to-image registration to an existing orthorectified 
Landsat image (http://www.landsat.org). All images were regis-
tered to an average root-mean-square error of less than one pixel.

Following the manual coregistration procedure, each scene 
was processed for each of the 9 years using CLASlite (Version 3.1; 
Asner et al., 2009). CLASlite is an automated change detection 
and mapping software optimized for tropical forests but was used 
here to test the feasibility across spatially heterogeneous temper-
ate forested landscapes such as Massachusetts. CLASlite requires 
limited user interaction in the four main processing steps (image 
calibration, fraction image creation, forest cover mapping, and 
deforestation and disturbance delineation), which is optimal for 
rapid forest cover mapping spanning multiple dates.
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591Land Cover Change Detection

First, all scenes were individually imported into CLASlite 
by specifying the required ancillary and metadata informa-
tion. During image calibration, CLASlite uses 6S radiative 
transfer code to atmospherically correct each scene and con-
vert the output images from radiance values to reflectance. 
Second, CLASlite employs a Monte Carlo (AutoMCU; Asner 
et al. 2002) spectral decomposition algorithm to partition each 
scene into proportional fractional cover types of bare ground 
(B), photosynthetic vegetation (PV), and nonphotosynthetic 
vegetation (NPV) for every pixel (Figure 21.2). During this 
stage, the user is able to specify the degree to which clouds 
and water bodies are masked out of the resulting image. Third, 
CLASlite delineates forest versus nonforest pixels based on a 
user-defined threshold based on proportional PV against B and 
NPV constituents (Figure 21.3). Finally, CLASlite evaluates the 
fractional and reflectance images to produce disturbance and 
degradation classifications for each time step. As defined by 

Asner et  al. (2009), deforestation refers to a diffuse thinning 
of the forest canopy, while degradation quantifies any spa-
tial or temporal persistence of forest disturbance. In this case 
study, CLASlite maps the location of deforestation and forest 
disturbance in eight eras: 1985–1993, 1993–1995, 1995–1999, 
1999–2002, 2002–2009, 2009–2010, 2010–2011, and 2011–2013 
(Figure 21.4).

CLASlite forest cover maps for each time period were vali-
dated using two independent approaches. The first method 
employed the 30 m resolution MaFoMP land cover maps (Rogan 
et al. 2010) for the years 1984, 1990, 2000, and 2009 to produce 
a cross tabulation matrix of quantity agreement and allocation 
agreement with the associated CLASlite forest cover images. 
This assessment determined the degree to which pixels of simi-
lar land cover type (forest or nonforest) are in agreement with 
the 30 m MaFoMP maps (MaFoMP 2011; Table 21.7). Errors of 
omission and commission were reported for each year as a per-
centage of all pixels in spatial and quantity agreement or dis-
agreement to the MaFoMP map (Table 21.8). Kappa values and 
the Cramer’s V statistic were reported for each year (Table 21.9).

Additionally, CLASlite change maps were validated using a 
randomly sampled collection of 200 classified pixels that were 
used to compare the CLASlite delineated pixel values to high 
spatial resolution Google Earth imagery (Dorais and Cardille 
2011; Google, Inc. 2014). The second assessment allowed for an 
independent evaluation of quantity and allocation pixel agree-
ment to determine the degree to which the CLASlite outputs are 
correctly classifying forest versus nonforest land cover types. 
We used available Google Earth imagery that was closest in tem-
poral proximity to the CLASlite-generated forest cover maps. 
The original fine spatial resolution data were acquired from 
DigitalGlobe (i.e., WorldView-2 data). Additionally, the defor-
estation caused by the June 2011 tornado was validated via 50 
randomly sampled points using a 2011 Google Earth image cap-
tured post tornado.

21.6.1 cLASlite Results

21.6.1.1 Forest cover Mapping

Forest cover maps produced through an iterative threshold-
ing procedure of the AutoMCU fraction images resulted in a 
508 km2 net reduction in forest from 1985 to 2009 (Figure 21.3). 
Comparatively, the MaFoMP maps generated a 566 km2 reduc-
tion in forest from 1984 to 2009, demonstrating that CLASlite 
was within a 10% range of similar transitions over a similar time 
period. The CLASlite-generated forest cover–type maps resulted 
in an 81% kappa agreement with the MaFoMP maps and an 
average 85% accuracy when validated with randomly sampled 
Google Earth imagery.

21.6.1.2 Deforestation and Disturbance Mapping

Between 1985 and 2013, the study area exhibited a net for-
est change of 2301  km2, equating to 19.5% of the study area 
(Table  21.10). The largest total amount of forest change was 

TABLe 21.6 Detailed Description of Scene Date, Spatial Location, 
and Sensor Type Used

Acquisition Date

Landsat Scene
Landsat 
SensorPath Row

August 8, 1985 12 30 TM
August 8, 1985 12 31 TM
September 1, 1985 13 30 TM
September 1, 1985 13 31 TM
August 15, 1993 12 30 TM
August 15, 1993 12 31 TM
July 5, 1993 13 30 TM
July 5, 1993 13 31 TM
August 21, 1995 12 30 TM
August 21, 1995 12 31 TM
July 15, 1999 13 30 TM
July 15, 1999 13 31 TM
July 31, 1999 12 30 ETM+
July 31, 1999 12 31 ETM+
July 23, 2002 12 30 TM
July 23, 2002 12 31 TM
July 10, 2009 12 30 TM
July 10, 2009 12 31 TM
August 18, 2009 13 30 TM
August 18, 2009 13 31 TM
August 30, 2010 12 30 TM
August 30, 2010 12 31 TM
September 6, 2010 13 30 TM
September 6, 2010 13 31 TM
July 17, 2011 12 30 TM
July 17, 2011 12 31 TM
June 16, 2011 13 30 TM
July 7, 2011 13 31 TM
August 6, 2013 12 30 OLI TIRS
August 6, 2013 12 31 OLI TIRS
September 30, 2013 13 30 OLI TIRS
September 30, 2013 13 31 OLI TIRS
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592 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

observed between the interval of 1985–1993, followed by 1995–
1999 and 2002–2009, respectively (Figure 21.5), representing 
13.5% of the total area that was converted from forest to nonfor-
est (Table 21.10). A visual assessment of the deforestation and dis-
turbance results indicated that forest change was overestimated 
due to subtle variation in forest phenology, though CLASlite was 
able to detect most major land-clearing disturbances across one 
to many years.

21.6.1.3 Gardner, Massachusetts, Forest change

The case study located in Gardner, Massachusetts (Figure 21.4), 
illustrated the rural to urban land conversion, a common trend 
throughout the study area. Forest cover was reduced by 15.2% 
from 1985 (105 km2) to 2013 (84 km2). Across all years, a system-
atic and continuous shift from forest to nonforest cover types 
is revealed (Figure 21.4). CLASlite forest cover maps for 1985 
report 105  km2, compared to the MaFoMP maps of 106  km2. 
Concomitantly, the 2009 CLASlite output reported 87  km2 of 

forested area remaining in Gardner, MA, compared to 96 km2 
in the MaFoMP product. The area differences between the 2009 
classifications were less than 4% of the total case study area of 
Gardner, Massachusetts. Similar to the eastern Massachusetts 
deforestation and disturbance mapping, the amount of area 
affected by forest change in Gardner was overestimated. The 
total forest change from 1985 to 2013 was reported as being 
33 km2 (23%), where the greatest era of change was 1985–1993, 
followed by 1995–1999 and 2002–2009.

21.6.1.4 2011 tornado Disturbance

On June 1, 2011, a 37 km long and 0.8 km wide tornado track 
touchdowned across southcentral Massachusetts (Figure 21.6). 
Using the 2010–2011 CLASlite deforestation output, we pro-
duced a detailed rendition of the tornado disturbed areas, 
encompassing 20.3 km2 over the 60 km track (Figure 21.6). Two 
years posttornado disturbance, the 2013 forest cover image 
reported 4.8  km2 of forest succession along the disturbance 

Urban center

Gardner

Lawrence

Boston
Worcester

Webster

Kingston

0 10

N

20 40 60 80
km

NPV fraction
PV fraction

Bare fraction

FIgure 21.2 Study area in Central Massachusetts fraction composite image produced by CLASlite’s AutoMCU with examples of rural (Webster), 
urban (Lawrence), and coastal (Kingston) landscapes.
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593Land Cover Change Detection

edges, while 15.2 km2 was still in a disturbed state. Based on 50 
randomly sampled points, the agreement was 93% across the 
tornado track.

21.7  Knowledge Gaps and 
Future Directions

A remote sensing renaissance has begun. Not since the launch of 
Earth Resources Technology Satellite 1 in 1972 has the remote sens-
ing community witnessed a more empowering era. Since the mid-
1990s, most of the information bottlenecks to operational-style 
remote sensing research and application have begun to be opened 
wide for effective and sustainable Earth observation science. The 
MODIS and Landsat science teams have tenaciously pushed for 
free, accurate data, and information products, that can be accessed 
by the rapidly growing global user community. At the same time, 
high spatial resolution data are available globally from a variety 
of private companies, most notably (for view only) the Google 
Earth corporation, at 1–4 m. Importantly, the fields of Landscape 

Ecology and Land Change Science have claimed remotely sensed 
data as an invaluable component of their respective scientific 
practice. International charters such as the UN-SPIDER initia-
tive rely completely on Earth observation data to draw attention 
to natural and humanitarian crises. As the content of this chapter 
highlights, the increased availability of coarse, medium, and high 
spatial resolution data and the surge in efficient automated meth-
ods place remote sensing science in a better place than it has ever 
been in 40 years. In the next 10 years, remote sensing practitioners 
can expect to see a multiplier effect with regard to remote sensing 
applications, as data, methods, and continued advocacy accumu-
late and expand to new fields and new problems. The following list 
highlights the current knowledge gaps and future directions for 
the remote sensing land change community:

 1. Ironically, as more and more data become available, more 
data are needed. Referring to the Landsat program, there 
will be increasing demand for Landsat MSS data and also 
TM data that have not yet been catalogued. The collec-
tion and processing of these data from various agencies 

Forest

Nonforest

Urban center
Water/cloud mask

0 10 20 40 60 80
km

Worcester

Webster

Kingston

Boston

Lawrence

Gardner

FIgure 21.3 Statewide automated forest cover image for 2013, with examples of rural (Webster), urban (Lawrence), and coastal (Kingston) 
landscapes. CLASlite produced cloud/water mask is delineated in black.
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60%
40%

2013

30%

1995

70%

38%62%

2009

61%
39%

2010

1985

71%
29%

66%
34%

1999

65%
34%

2011

1993

71%
29%

35%

2002

65%

Urban center—gardner, MA

Water/cloud mask
0 1 2 4 6 8

km
Forest

Nonforest

FIgure 21.4 Forest cover temporal change sequence of Gardner, MA, from 1985 to 2013.  Note, each forest cover scene has the percent propor-
tion of pixels for forest and nonforest land cover classes.
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595Land Cover Change Detection

TABLe 21.7 Cross Tabulation Assessment Showing Pixel Agreement for Like Years in Terms of Percent of Total Pixel

MAFOMP
C

LA
Sl

ite

Year Class

1984 1990 2000 2009

Forest Nonforest Forest Nonforest Forest Nonforest Forest Nonforest

1985 Forest 0.545 0.078 — — — — — —
Nonforest 0.121 0.256 — — — — — —

1993 Forest — — 0.520 0.090 — — — —
Nonforest — — 0.085 0.305 — — — —

2002 Forest — — — — 0.510 0.118 — —
Nonforest — — — — 0.072 0.299 — —

2009 Forest — — — — — — 0.497 0.078
Nonforest — — — — — — 0.128 0.297

TABLe 21.8 Kappa (a) and Cramer’s V (b) Statistics Showing the Relative Pixel Agreement Accuracy of the CLASlite Forest 
Cover Classification to MaFoMP Imagery across Four Time Steps

Kappa

MAFOMP

C
LA

Sl
ite

Year 1984 1990 2000 2009

1985 0.8183 — — —
1993 — 0.8275 — —
2002 — — 0.8179 —
2009 — — — 0.81637

Cramer’s V

MAFOMP

C
LA

Sl
ite

Year 1984 1990 2000 2009

1985 0.7839 — — —
1993 — 0.7864 — —
2002 — — 0.7966 —
2009 — — — 0.781

TABLe 21.9 Random Sample Pixel Percent Agreement of Forest Cover Types of the CLASlite Classification Against 
High-Resolution Google Earth Imagery
Google Earth™

C
LA

SL
ite

Year

1995 2003 2008 2010 2013

Class Forest Nonforest Forest Nonforest Forest Nonforest Forest Nonforest Forest Nonforest

1995 Forest 0.638 0.064 — — — — — — — —
Nonforest 0.037 0.25 — — — — — — — —

2002 Forest — — 0.613 0.032 — — — — — —
Nonforest — — 0.048 0.296 — — — — — —

2009 Forest — — — — 0.608 0.322 — — — —
Nonforest — — — — 0.032 0.317 — — — —

2010 Forest — — — — — — 0.585 0.032 — —
Nonforest — — — — — — 0.037 0.335 — —

2013 Forest — — — — — — — — 0.5945 0.0594
Nonforest — — — — — — — — 0.0324 0.308

Note: With increasing time there is a direct relationship to decreasing forest and increasing nonforest agreement.
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throughout the world will greatly extend the reach of the 
Landsat program, especially to developing countries—the 
very locations where land change scientists focus their 
research. Additionally, the cost of high spatial resolution 
data is problematic. One to four meter data are indispen-
sible for locations where in situ data are unavailable, but 

these data can currently only be purchased by govern-
ments or government-affiliated research initiatives.

 2. Given the importance placed currently on land cover 
modifications by the land change science community, it is 
important to distinguish their occurrence from land cover 
conversions. This is a difficult task because both types of 

TABLe 21.10 Change Statistics per Era

Era Deforestation Total Deforestation (%) Disturbance Total Disturbance (%) Forest Change Total

1985–1993 565.37 4.81 318.21 2.71 883.58
1993–1995 57.1 0.49 29.42 0.25 86.52
1995–1999 250.76 2.13 168.48 1.43 419.24
1999–2002 105.49 0.90 40.57 0.35 146.05
2002–2009 215.35 1.83 119.56 1.02 334.91
2009–2010 81.14 0.69 65.39 0.56 146.54
2010–2011 82.88 0.71 82.52 0.70 165.4
2011–2013 44.97 0.38 74.01 0.63 118.97
Total 1403.06 11.94 898.15 7.65 2301.21

Forest change is the sum of disturbance and deforestation.

2011—39 days post-Tornado
(a)

(b)

Southbridge

Southbridge

2013—2 years post-Tornado

Forest
Nonforest
Urban center

Forest succession postdisturbance
Tornado disturbance track

0 2 4 8 12 16
km

FIgure 21.5 Deforested tornado track as depicted by the CLASlite 2010–2011 deforestation class output (a). Two years post disturbance (b), note 
that successional infill (blue) has dominated the outer edges of the tornado track, while the interior of the tornado track (red) is still in a deforested 
state.
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597Land Cover Change Detection

change can result in similar magnitudes of reflectance in 
a change detection scenario. New methods are needed to 
ameliorate this problem, especially in developing coun-
tries where operational data availability can be scarce.

 3. The remote sensing change detection community has laid 
a strong framework on the back of optical remote sensing 
imagery. While this paradigm is highly rewarding, optical 
data are limited in a variety of situations, especially con-
cerning mapping in cloud-prone and data-poor locations. 
The next decade should hopefully see an expansion in the 
availability use of large-area radar and LIDAR data collec-
tions such that landscape monitoring will be as complete 
in Cameroon as it is in the United States.

 4. All land cover change detection and monitoring relies on 
the availability of accurate land cover/use information for 
every location where remotely sensed data are captured. 
Unfortunately, the process of conducting change detec-
tion for a given location is hampered by the paucity of reli-
able ground reference, wildlife habitat, agricultural land 
use, and ecological disturbance information. In the next 
decade, it is hoped that this knowledge gap will be at least 
partially filled through continued land cover/use mapping 
efforts, as well as map data sharing.
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